MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation.

نویسندگان

  • Anders Schlosser
  • Bartosz Pilecki
  • Line E Hemstra
  • Karin Kejling
  • Gudlaug B Kristmannsdottir
  • Helle Wulf-Johansson
  • Jesper B Moeller
  • Ernst-Martin Füchtbauer
  • Ole Nielsen
  • Katrine Kirketerp-Møller
  • Lalit K Dubey
  • Pernille B L Hansen
  • Jane Stubbe
  • Christoph Wrede
  • Jan Hegermann
  • Matthias Ochs
  • Birgit Rathkolb
  • Anja Schrewe
  • Raffi Bekeredjian
  • Eckhard Wolf
  • Valérie Gailus-Durner
  • Helmut Fuchs
  • Martin Hrabě de Angelis
  • Jes S Lindholt
  • Uffe Holmskov
  • Grith L Sorensen
چکیده

OBJECTIVE Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. APPROACH AND RESULTS We produced Mfap4-deficient (Mfap4(-/-)) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4(-/-) mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4(-/-) carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin αVβ3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin αVβ3-dependent manner. CONCLUSIONS MFAP4 regulates integrin αVβ3-induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Interferon regulatory factor 9 is critical for neointima formation following vascular injury

Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates int...

متن کامل

Smooth muscle cell apoptosis promotes vessel remodeling and repair via activation of cell migration, proliferation, and collagen synthesis.

OBJECTIVE Although vascular smooth muscle cell (VSMC) apoptosis occurs after vessel injury and during remodeling, the direct role of VSMC death in determining final vessel structure is unclear. We sought to determine the role of VSMC apoptosis in vessel remodeling, medial repair, and neointima formation and to identify the mediators involved. METHODS AND RESULTS The left common carotid artery...

متن کامل

Integrative Physiology/Experimental Medicine Smooth Muscle Cell Apoptosis Promotes Vessel Remodeling and Repair via Activation of Cell Migration, Proliferation, and Collagen Synthesis

Objective—Although vascular smooth muscle cell (VSMC) apoptosis occurs after vessel injury and during remodeling, the direct role of VSMC death in determining final vessel structure is unclear. We sought to determine the role of VSMC apoptosis in vessel remodeling, medial repair, and neointima formation and to identify the mediators involved. Methods and Results—The left common carotid artery w...

متن کامل

Transglutaminase 2 promotes PDGF-mediated activation of PDGFR/Akt1 and β-catenin signaling in vascular smooth muscle cells and supports neointima formation.

BACKGROUND Phenotypic switch of vascular smooth muscle cells (VSMCs) accompanies neointima formation and associates with vascular diseases. Platelet-derived growth factor (PDGF)-induced activation of PDGFR/Akt1 and β-catenin signaling pathways in VSMCs has been implicated in vessel occlusion. Transglutaminase 2 (TG2) regulates these pathways and its levels are increased in the neointima. OBJE...

متن کامل

The induction of yes-associated protein expression after arterial injury is crucial for smooth muscle phenotypic modulation and neointima formation.

OBJECTIVE Abnormal proliferation and migration of vascular smooth muscle cells (SMCs) are the key events in the progression of neointima formation in response to vascular injury. The goal of this study is to investigate the functional role of a potent oncogene yes-associated protein (YAP) in SM phenotypic modulation in vitro and in vivo. METHODS AND RESULTS In vitro cell culture and in vivo i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 36 1  شماره 

صفحات  -

تاریخ انتشار 2016